STUDY PROTOCOL

WORLD JOURNAL OF EMERGENCY SURGERY

Open Access

Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study

Massimo Sartelli^{1*}, Fausto Catena², Luca Ansaloni³, Federico Coccolini³, Davide Corbella⁴, Ernest E Moore⁵, Mark Malangoni⁶, George Velmahos⁷, Raul Coimbra⁸, Kaoru Koike⁹, Ari Leppaniemi¹⁰, Walter Biffl⁵, Zsolt Balogh¹¹, Cino Bendinelli¹¹, Sanjay Gupta¹², Yoram Kluger¹³, Ferdinando Agresta¹⁴, Salomone Di Saverio¹⁵, Gregorio Tugnoli¹⁵, Elio Jovine¹⁶, Carlos A Ordonez¹⁷, James F Whelan¹⁸, Gustavo P Fraga¹⁹, Carlos Augusto Gomes²⁰, Gerson Alves Pereira Junior²¹, Kuo-Ching Yuan²², Miklosh Bala²³, Miroslav P Peev⁷, Offir Ben-Ishay¹³, Yunfeng Cui²⁴, Sanjay Marwah²⁵, Sanoop Zachariah²⁶, Imtiaz Wani²⁷, Muthukumaran Rangarajan²⁸, Boris Sakakushev²⁹, Victor Kong³⁰, Adamu Ahmed³¹, Ashraf Abbas³², Ricardo Alessandro Teixeira Gonsaga³³, Gianluca Guercioni³⁴, Nereo Vettoretto³⁵, Elia Poiasina³, Rafael Díaz-Nieto³⁶, Damien Massalou³⁷, Matej Skrovina³⁸, Ihor Gerych³⁹, Goran Augustin⁴⁰, Jakub Kenig⁴¹, Vladimir Khokha⁴², Cristian Tranà⁴³, Kenneth Yuh Yen Kok⁴⁴, Alain Chichom Mefire⁴⁵, Jae Gil Lee⁴⁶, Suk-Kyung Hong⁴⁷, Helmut Alfredo Segovia Lohse⁴⁸, Wagih Ghnnam³², Alfredo Verni⁴⁹, Varut Lohsiriwat⁵⁰, Boonying Siribumrungwong⁵¹, Tamer El Zalabany⁵², Alberto Tavares⁵³, Gianluca Baiocchi⁵⁴, Koray Das⁵⁵, Julien Jarry⁵⁶, Maurice Zida⁵⁷, Norio Sato⁹, Kiyoshi Murata⁵⁸, Tomohisa Shoko⁵⁹, Takayuki Irahara⁶⁰, Ahmed O Hamedelneel⁶¹, Noel Naidoo⁶², Abdul Rashid Kayode Adesunkanmi⁶³, Yoshiro Kobe⁶⁴, Wataru Ishii⁶⁴⁶⁵, Kazuyuki Oka⁶⁶, Yoshimitsu Izawa⁶⁷, Hytham Hamid⁶⁸, Iqbal Khan⁶⁸, AK Attri¹³, Rajeev Sharma¹³, Juan Sanjuan¹⁷, Marisol Badiel¹⁷ and Rita Barnabé¹⁶

Abstract

The CIAOW study (Complicated intra-abdominal infections worldwide observational study) is a multicenter observational study underwent in 68 medical institutions worldwide during a six-month study period (October 2012-March 2013). The study included patients older than 18 years undergoing surgery or interventional drainage to address complicated intra-abdominal infections (IAIs).

1898 patients with a mean age of 51.6 years (range 18-99) were enrolled in the study. 777 patients (41%) were women and 1,121 (59%) were men. Among these patients, 1,645 (86.7%) were affected by community-acquired IAIs while the remaining 253 (13.3%) suffered from healthcare-associated infections. Intraperitoneal specimens were collected from 1,190 (62.7%) of the enrolled patients.

827 patients (43.6%) were affected by generalized peritonitis while 1071 (56.4%) suffered from localized peritonitis or abscesses.

The overall mortality rate was 10.5% (199/1898).

According to stepwise multivariate analysis (PR = 0.005 and PE = 0.001), several criteria were found to be independent variables predictive of mortality, including patient age (OR = 1.1; 95%CI = 1.0-1.1; p < 0.0001), the presence of small bowel perforation (OR = 2.8; 95%CI = 1.5-5.3; p < 0.0001), a delayed initial intervention (a delay exceeding 24 hours) (OR = 1.8; 95%CI = 1.5-3.7; p < 0.0001), ICU admission (OR = 5.9; 95%CI = 3.6-9.5; p < 0.0001) and patient immunosuppression (OR = 3.8; 95%CI = 2.1-6.7; p < 0.0001).

* Correspondence: massimosartelli@gmail.com

¹Department of Surgery, Macerata Hospital, Macerata, Italy

Full list of author information is available at the end of the article

^{© 2014} Sartelli et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction

Intra-abdominal infections (IAIs) include a wide spectrum of pathological conditions, ranging from uncomplicated appendicitis to faecal peritonitis [1].

In the event of complicated IAI the infection proceeds beyond a singularly affected organ and causes either localized peritonitis (intra-abdominal abscesses) or diffuse peritonitis. Effectively treating patients with complicated intra-abdominal infections involves both source control and antimicrobial therapy [2,3].

In order to describe the epidemiological, clinical, microbiological, and surgical treatment profiles of complicated intra-abdominal infections (IAIs) in Europe, the World Society of Emergency Surgery (WSES) designed the CIAO Study (Complicated intra-abdominal infections observational study). The CIAO Study was conducted during 2012 across twenty European countries [4].

Given the interesting results of the CIAO Study, WSES designed a prospective observational study investigating the management of complicated intra-abdominal infections in a worldwide context.

The CIAOW study (Complicated intra-abdominal infections worldwide observational study) is a multicenter observational study underwent in 68 medical institutions worldwide during a six-month study period (October 2012-March 2013).

In January 2013 the preliminary results (2-month study period) of the CIAOW study were published [5].

WSES presents the definitive data of the CIAOW Study.

Methods

Aim

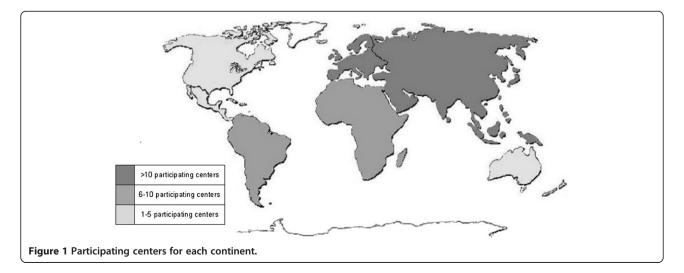
The purpose of the study was to describe the clinical, microbiological, and treatment profiles of both communityand healthcare-acquired complicated IAIs in a worldwide context. Patients older than 18 years with both communityacquired and healthcare-associated IAIs were included in the database.

Study population

The CIAOW study is a multicenter observational study underwent in 68 medical institutions worldwide. The study included patients undergoing surgery or interventional drainage to address complicated IAIs.

Medical institutions from each continent participated in the study. The geographical distribution of the participating centers are represented in Figure 1.

Study design


The study did not attempt to change or modify the laboratory or clinical practices of the participating physicians, and neither informed consent nor formal approval by an Ethics Committee were required.

The study met the standards outlined in the Declaration of Helsinki and Good Epidemiological Practices.

The study was monitored by the coordination center, which investigated and verified missing or unclear data submitted to the central database. This study was performed under the direct supervision of the board of directors of WSES.

Data collection

In each centre, the coordinator collected and compiled data in an online case report system. These data included the following: (i) patient and disease characteristics, i.e., demographic data, type of infection (community- or healthcare-acquired), severity criteria, previous curative antibiotic therapy administered in the 7 days preceding surgery; (ii) origin of infection and surgical procedures performed; and (iii) microbiological data, i.e., identification of bacteria and microbial pathogens within the peritoneal

fluid, the presence of yeasts (if applicable), and the antibiotic susceptibilities of bacterial isolates.

The primary endpoints included the following:

- Clinical profiles of intra-abdominal infections
- Epidemiological profiles (epidemiology of the microorganisms isolated from intra-abdominal samples and these organisms' resistance to antibiotics)
- Management profiles

Results

Patients

2,020 cases were collected in the online case report system. 122 cases did not meet the inclusion criteria.

1,898 patients with a mean age of 51.6 years (range 18-99) were enrolled in the CIAOW study. 777 patients (41%) were women and 1,121 (59%) were men. Among these patients, 1,645 (86.7%) were affected by community-acquired IAIs while the remaining 253 (13.3%) suffered from heathcare-associated infections. Intraperitoneal specimens were collected from 1,190 (62.7%) of the enrolled patients [213 patients (84.2%) with Healthcare-associated infections and 977 (59.4%) with Community-acquired infections].

827 patients (43.6%) were affected by generalized peritonitis while 1071 (56.4%) suffered from localized peritonitis or abscesses.

296 patients (14.2%) were admitted in critical condition (severe sepsis/septic shock).

Table 1, 2 overview the clinical findings and radiological assessments recorded upon patient admission.

Source control

The various sources of infection are outlined in Table 3. The most frequent source of infection was acute appendicitis; 633 cases (33.3%) involved complicated appendicitis.

The open appendectomy was the most common means of addressing complicated appendicitis. 358 patients (56.5%) admitted for complicated appendicitis underwent open appendectomies: 276 patients (77.1%) for localized infection or abscesses and 82 patients (22.9%) for generalized peritonitis. A laparoscopic appendectomy was performed for 226 patients (35.7%) with complicated acute appendicitis; of these patients, 193 (85.4%) underwent the procedure for localized peritonitis/abscesses and 33 (14.6%) underwent the procedure for generalized peritonitis.

Open bowel resection was performed for 5 patients affected by complicated appendicitis. In the other 48 cases of complicated appendicitis (7.6%), conservative treatment (percutaneous drainage, surgical drainage, and non-operative treatment) was performed. 3% of patients underwent percutaneous drainage (17/513) to address

Clinical findings	Patients
	N 1898 (100%)
Abdominal pain	288 (15.1)
Abdominal pain, abdominal rigidity	284 (15%)
Abdominal pain, abdominal rigidity, T > 38°C or <36°C, WBC >12,000 or < 4,000	314 (16.5%)
Abdominal pain, abdominal rigidity, T > 38°C or <36°C,	67 (3.5)
Abdominal pain, abdominal rigidity, WBC >12,000 or < $4,000$	376 (19.8%)
Abdominal pain, $T > 38^{\circ}C$ or $< 36^{\circ}C$,	68 (3.6%)
Abdominal pain, T > 38°C or <36°C, WBC >12,000 or < 4,000	139 (7.3%)
Abdominal pain, WBC >12,000 or < 4,000	266 (14%)
T > 38°C or <36°C	6 (0.3%)
T > 38°C or <36°C, WBC >12,000 or < 4,000	12 (0.6%)
Abdominal rigidity, WBC >12,000 or < 4,000	9 (0.5%)
Abdominal rigidity	2 (0.1%)
Abdominal rigidity, T > 38°C or <36°C	1 (0.05%)
Abdominal pain, abdominal rigidity, T > 38°C or <36°C, WBC >12,000 or < 4,000	7 (0.4%)
WBC >12,000 or < 4,000	11 (0.6%)
Not reported	48 (2.5%)

appendicular abscesses or localized intra-abdominal infections.

Among the patients with complicated cholecystitis (278), the open cholecystectomy was the most frequently performed procedure. 47.8% (133) and % 36.7 (102) of cholecystitis patients underwent open and laparoscopic

Table 2 Radiological procedures

Radiological procedures	Patients
	N 1898 (100%)
Abdomen X ray	240 (12.6%)
Abdomen X ray, CT	102 (5.4%)
Abdomen X ray, ultrasound	356 (18.7%)
Abdomen X ray, ultrasound, CT	112 (5.9%)
Abdomen X ray, ultrasound, MRI	4 (0.2%)
Abdomen X ray, CT,ultrasound, MRI	7 (0.4%)
CT	426 (22.4%)
CT, MRI	2 (0.1%)
Ultrasound	384 (20.2%)
Ultrasound, CT	87 (4.6%)
Ultrasound, CT, MRI	1 (0.05%)
Ultrasound, MRI	3 (0.1%)
MRI	1 (0.05%)
Not reported	173 (9.1%)

Table 3 Source of infection

Source of infection	Patients
	N 1898 (100%)
Appendicitis	633 (33.3%)
Cholecystitis	278 (14.6%)
Post-operative	170 (15.,9%)
Colonic non diverticular perforation	115 (9.9%)
Gastroduodenal perforations	253 (13.3%)
Diverticulitis	106 (5.6%)
Small bowel perforation	145 (7.6%)
Others	122 (6.4%)
PID	30 (1.6%)
Post traumatic perforation	46 (2.4%)

cholecystectomies, respectively. The remaining patients were treated with conservative methods (percutaneous drainage, non-operative treatment).

Among the patients with complicated diverticulitis (106) the Hartmann resection was the most frequently performed procedure. 48 patients (45.3%) underwent a Hartmann resection. 31 of these patients (64.6%) underwent a Hartmann resection for generalized peritonitis, while the remaining 17 (35.6%) underwent the same procedure for localized peritonitis or abscesses. Colo-rectal resection was performed in 18 cases (17%) (5 with and 13 without protective stoma).

The remaining patients received conservative treatment (percutaneous drainage, non-operative treatment, surgical drainage and stoma). 4 patients underwent laparoscopic drainage.

For patients with gastro-duodenal perforations (253 cases), the most common surgical procedure was gastroduodenal suture. 212 patients underwent open gastroduodenal suture (83.8%) and 18 patients underwent laparoscopic gastro-duodenal suture (7.1%). 12 patients (4.7%) underwent gastro-duodenal resection and 6 patients (2.4%) received conservative treatment. The remaining patients underwent alternative procedures.

Of the 145 patients with small bowel perforations, 98 underwent open small bowel resection (85.2%) and 3 (2%) underwent laparoscopic small bowel resection. 28 patients (19.3%) were treated by stoma.

Among the 115 patients with colonic non-diverticular perforation, 42 (36.5%) underwent Hartmann resection, 26 (22.6%) underwent open resection with anastomosis and without stoma protection, and 26 underwent open resection with stoma protection (22.6%).

170 cases (8.9%) were attributable to post-operative infections.

Source control was successfully implemented for 1,735 patients (91.4%).

Microbiology

Intraperitoneal specimens were collected from 1,190 patients (62.7%).

These specimens were obtained from 977 of the 1,645 patients presenting with community-acquired intraabdominal infections (59.4%).

Intraperitoneal specimens were collected from 213 (84.2%) of the remaining 253 patients with nosocomial intra-abdominal infections.

The aerobic bacteria identified in intraoperative samples are reported In Table 4, 5.

The microorganisms isolated in subsequent samples from peritoneal fluid are reported in Table 6.

All the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid are reported in Table 7.

The major pathogens involved in intra-abdominal infections were found to be *Enterobacteriaceae*.

Among the intra-operative isolates, Extended-Spectrum Beta-Lactamase (ESBL)-producing *Escherichia coli* isolates comprised 13.7% (75/548) of all *Escherichia coli* isolates, while ESBL-positive *Klebsiella pneumoniae* isolates represented 18.6% (26/140) of all *Klebsiella pneumoniae* isolates. ESBL-positive *Enterobacteriaceae* were more prevalent in patients with healthcare associated infections IAIs than they were in patients with community-acquired IAIs. ESBL-positive *Escherichia coli* isolates comprised

Table 4 Aerobic k	oacteria	identified	from	intra-operative
peritoneal fluid				

Total	1.330 (100%)
Aerobic Gram-negative bacteria	957 (71.9%)
Escherichia coli	548 (41.2%)
(Escherichia coli resistant to third generation cephalosporins)	75 (5.6%)
Klebsiella pneuumoniae	140 (10.5%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	26 (1.4%)
Klebsiella oxytoca	11 (0.8%)
(Klebsiella oxytoca resistant to third generation cephalosporins)	2 (0.1)
Enterobacter	64 (4.8%)
Proteus	47 (3.5%)
Pseudomonas	74 (5.6%)
Others	73 (5.6%)
Aerobic Gram-positive bacteria	373 (29.1%)
Enterococcus faecalis	153 (11.5%)
Enterococcus faecium	58 (4.4%)
Staphylococcus Aureus	38 (2.8%)
Streptococcus spp.	85 (6,4%)
Others	39 (2.9%)

Community-acquired IAIs	Isolates n°	Healthcare-associated (nosocomial) IAIs	Isolates n°
Aerobic bacteria	1030 (100%)	Aerobic bacteria	300 (100%)
Escherichia coli	456 (44.3%)	Escherichia coli	92 (21%)
(Escherichia coli resistant to third generation cephalosporins)	56 (5.4%)	(Escherichia coli resistant to third generation cephalosporins)	19 (6.3%)
Klebsiella pneumoniae	105 (10.1%)	Klebsiella pneumoniae	35 (11.7%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	11 (0.1%)	(Klebsiella pneumoniae resistant to third generation cephalosporins)	15 (5%)
Pseudomonas	56 (5.4%)	Pseudomonas	18 (5.7%)
Enterococcus faecalis	106 (10.3%)	Enterococcus faecalis	47 (15.7%)
Enterococcus faecium	38 (3.7%)	Enterococcus faecium	20 (6.7%)

Table 5 Aerobic bacteria from intra-operative samples in both community-acquired and healthcare-associated IAIs

20.6% (19/92) of all identified *Escherichia coli* isolates, while ESBL-positive *Klebsiella pneumoniae* isolates made up 42.8% (15/35) of all identified *Klebsiella pneumoniae* isolates.

Among all the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid, there were 110 isolates of *Escherichia coli ESBL*, 39 isolates of Klebsiella pneumoniae ESBL, 2 isolates of Klebsiella Oxytoca ESBL. There were 5 isolates of *Klebsiella pneumoniae* resistant to Carbapenems.

Among the microorganisms isolated in the intraoperative samples, there were 74 isolates of *Pseudomonas aeruginosa*, comprising 5.6% of all aerobic identified bacteria isolates.

Table 6 Microorganisms identified from subsequentperitoneal samples

Total	268 (100%)
Aerobic Gram-negative bacteria	195 (72.7%)
Escherichia coli	105 (41.8%)
(Escherichia coli resistant to third generation cephalosporins)	35 (13.%)
Klebsiella pneuumoniae	41 (15.3%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	13 (4.8%)
Pseudomonas	20 (7.4%)
Others	29 (10.8%)
Aerobic Gram-positive bacteria	41 (15.3%)
Enterococcus faecalis	16 (6%)
Enterococcus faecium	10 (3.4%)
Staphylococcus Aureus	7 (4%)
Others	8 (3%)
Bacteroides	8 (3%)
Candida albicans	17 (6%)
Non candida albicans	6 (2.2%)
Other yeats	2 (0.7%)

Table 7 Total of microorganisms identified from bothintraoperative and subsequent peritoneal samples

Total	1826 (100%)
Aerobic Gram-negative bacteria	1152 (63%)
Escherichia coli	653 (35.7%)
(Escherichia coli resistant to third generation cephalosporins)	110 (6%)
Klebsiella pneuumoniae	181 (9.9%)
(Klebsiella pneumoniae resistant to third generation cephalosporins)	39 (2.1%)
Klebsiella oxytoca	11 (0.6%)
(Klebsiella oxytoca resistant to third generation cephalosporins)	2 (0.1)
Enterobacter	75 (4.1%)
Proteus	52 (2.8%)
Pseudomonas	94 (5.1%)
Others	102 (5.6%)
Aerobic Gram-positive bacteria	414 (22.7%)
Enterococcus faecalis	169 (9.2%)
Enterococcus faecium	68 (3.7%)
Staphylococcus Aureus	46 (2.5%)
Streptococcus spp.	85 (4.6%)
Others	47 (2.6%)
Anaerobes	141 (7.7%)
Bacteroides	108 (5.9%)
(Bacteroides resistant to Metronidazole)	3 (0.2%)
Clostridium	11 (0.6%)
Others	22 (1.2%)
Candida spp.	117 (6.4%)
Candida albicans	90 (4.9%)
(Candida albicans resistant to Fluconazole)	2 (0.1%)
Non-albicans Candida	27 (1.4%)
(non-albicans Candida resistant to Fluconazole)	3 (0.1%)
Other yeats	2 (0.1%)

Among all the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid, there were 94 isolates of *Pseudomonas aeruginosa*, comprising 5.1% of all identified bacteria isolates.

The 2 *Pseudomonas aeruginosa* strains resistant to Carbapenems were also obtained from nosocomial infections.

Among all the aerobic gram-positive bacteria identified in the intraoperative samples, *Enterococci (E. faecalis and E. faecium)* were the most prevalent, representing 15.9% of all aerobic isolates, and were identified in 211 cases. Although *Enterococci* were also present in community-acquired infections, they were more prevalent in healthcare-associated infections (31.7%: 67/211).

Among all the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid Enterococci were 237/1826 (12.9%).

11 glycopeptide-resistant *Enterococci* were identified; 5 were glycopeptide-resistant *Enterococcus faecalis* isolates and 6 were glycopeptide-resistant *Enterococcus faecium* isolates.

Tests for anaerobes were conducted for 486 patients.

Identified anaerobic bacteria from intra-operative specimens are reported in Table 8.

Among all the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid, 141 anaerobes were observed. The most frequently identified anaerobic pathogen was *Bacteroides*. 108 *Bacteroides* isolates were observed during the course of the study.

In Table 9 are illustrated Candida spp. isolated in intraoperative specimens.

Among all the microorganisms isolated in both intraoperative and subsequent samples from peritoneal fluid, 117 *Candida* isolates were collectively identified (6%). 90 were *Candida albicans* and 27 were *non-albicans Candida*.

Outcome

The overall mortality rate was 10.5% (199/1898).

565 patients (29.8%) were admitted to the intensive care unit (ICU) in the early recovery phase immediately following surgery.

223 patients (11.7%) ultimately required additional surgeries. 62 (11.3%) of these patients underwent open abdominal procedures.

Table 8 Anaerobic bacteria identified from intra-operative peritoneal fluid

Anaerobes	133
Bacteroides	100 (75%)
(Bacteroides resistant to Metronidazole)	3 (1.5%)
Clostridium	11 (8.2%)
Others	22 (16.5%)

Table 9 Candida isolates identified from intra-operativeperitoneal fluid

Candida spp.	94
Candida albicans	73 (78.7%)
(Candida albicans resistant to Fluconazole)	2 (2.1%)
Non-albicans Candida	21 (19.1%)
(non-albicans Candida resistant to Fluconazole)	3 (3.2%)

In the immediate post-operative clinical period 269 patients were critically ill (132 with septic shock, 137 with severe sepsis).

According to univariate statistical analysis of the data (Table 10), septic shock (OR = 14.9; 95%CI = 9.3-26.7; p < 0.0001) and severe sepsis (OR = 4.2; 95%CI = 2.8-6.3; p < 0.0001) upon hospital admission were both predictive of patient mortality.

The setting of acquisition was also a variable found to be predictive of patient mortality (healthcare-associated infections: OR = 3.1; 95%CI = 2.2-4.5; p < 0.0001).

Among the various sources of infection, colonic nondiverticular perforation (OR = 21; 95%CI = 9.9-44.6 p < 0.0001), complicated diverticulitis (OR = 11; 95%CI = 4.9-25.2; p < 0.0001), small bowel perforation (OR = 14.3; 95%CI = 6.7-30.3; p < 0.0001) and post-operative infections (OR = 19.1; 95%CI = 9.3-39.3; p < 0.0001) were significantly correlated with patient mortality.

Table 10 Univariate analysis: risk factors for occurrence	:e
of death during hospitalization	

Risk factors	Odds ratio	95%Cl	р
Clinical condition upon hospital admission			
Severe sepsis	27.6	15.9-47.8	< 0.0001
Septic shock	14.6	8.7-24.4	< 0.0001
Healthcare associated infection	3.1	2.2-4.5	< 0.0001
Source of infection			
Colonic non-diverticular perforation	21	9.9-44.6	< 0.0001
Small bowel perforation	125.7	29.1-542	< 0.0001
Complicated diverticulitis	11	4.9-25.2	< 0.0001
Post-operative infections	19.1	9.3-39.3	< 0.0001
Delayed initial intervention	2.6	1.8-3.5	< 0.0001
Immediate post-operative clinical course			
Severe sepsis	33.8	19.5-58.4	< 0.0001
Septic shock	59.2	34.4-102.1	< 0.0001
ICU admission	18.6	12-28.7	< 0.0001
Comorbidities			
Malignancy	3.6	2.5-15.1	p < 0.0001
Immunosoppression	1.0	3.2-7.5	p < 0.0001
Serious cardiovascular disease	4.5	3.2-6.3	p < 0.0001

Mortality rates did not vary to a statistically significant degree between patients who received adequate source control and those who did not. However, a delayed initial intervention (a delay exceeding 24 hours) was associated with an increased mortality rate (OR = 3.6; 95% CI = 1.9-3.7; p < 0.0001).

The nature of the immediate post-operative clinical period was a significant predictor of mortality (severe sepsis: OR = 10.5; 95%CI = 24.0-66.0; p < 0.0001, septic shock: OR = 39.8; 95%CI = 6.4-17.5; p < 0.0001). Patients requiring ICU admission (OR = 12.9; 95%CI = 8.8-19.0; p < 0.0001) were also associated with increased mortality rates.

Also comorbidities were associated to patient mortality (Malignancy: OR = 3.6; 95%CI = 2.5-15.1; p < 0.0001, immunosuppression: OR = 1.0; 95%CI = 3.2-7.5; p < 0.0001, and serious cardiovascular disease: OR = 4.5; 95%CI = 3.2-6.3, p < 0.0001).

According to stepwise multivariate analysis (PR = 0.005 and PE = 0.001) (Table 11), several criteria were found to be independent variables predictive of mortality, including patient age (OR = 1.1; 95%CI = 1.0-1.1; p < 0.0001), the presence of small bowel perforation: OR = 2.8; 95% CI = 1.5-5.3; p < 0.0001), a delayed initial intervention (a delay exceeding 24 hours) (OR = 1.8; 95%CI = 1.5-3.7; p < 0.0001), ICU admission (OR = 5.9; 95%CI = 3.6-9.5; p < 0.0001) and patient immunosuppression (OR = 3.8; 95% CI = 2.1-6.7; p < 0.0001).

Discussion

The CIAOW Study confirmed that acute appendicitis is the most common intra-abdominal condition requiring emergency surgery worldwide. According to the WSES 2013 guidelines for management of intra-abdominal infections, both open and laparoscopic appendectomies are viable treatment options for complicated appendicitis [6]. CIAOW Study results indicate that the open approach was used in most patients and it was the most common approach in the patients with complicated appendicitis.

For patients with peri-appendiceal abscesses, the proper course of surgical treatment remains a point of

Table 11 Multivariate analysis: risk factors for occurrence of death during hospitalization

Risk factors	Odds ratio	95%Cl	р
Age	3.3	2.2-5	< 0.0001
Small bowel perforation	27.6	15.9-47.8	< 0.0001
Delayed initial intervention	14.6	8.7-24.4	< 0.0001
ICU admission	2.3	1.5-3.7	< 0.0001
Immunosuppression	3.8	2.1-6.7	< 0.0001

Stepwise multivariate analysis, PR = 0.005 E PE = 0.001 (Hosmer-Lemeshow chi2 (8) = 1.68, area under ROC curve = 0.9465).

contention in the medical community. Although guidelines for the management of intra-abdominal infections commonly assert that patients with peri-appendiceal abscesses should be treated with percutaneous imageguided drainage [5]. Percutaneous drainage with or without interval appendectomy to treat peri-appendiceal abscess results in fewer complications and shorter overall length of stay [6-8]. Data from CIAOW Study indi-

peri-appenceal abscess. Laparoscopic cholecystectomy versus open cholecystectomy question for acute cholecystitis has been extensively investigated. Several studies showed that early laparoscopic cholecystectomy resulted in a significantly reduced length of stay, no major complications, and no significant difference in conversion rates when compared with initial antibiotic treatment and delayed laparoscopic cholecystectomy [9-12].

cate that few patients underwent this procedure for a

The open cholecystectomy was the most common means of treating complicated cholecystitis; 47.8% (133) of the patients with complicated cholecystitis underwent this procedure. By contrast, 36.7% (102) underwent a laparoscopic procedure.

The optimal surgical management of colonic diverticular disease complicated by peritonitis remains a controversial issue. Hartmann's resection has been considered the procedure of choice in patients with generalized peritonitis and remains a safe technique for emergency colectomy in perforated diverticulitis, especially in elderly patients with multiple co-morbidities [13]. More recently, some reports have suggested that primary resection and anastomosis is the preferred approach to diverticulitis, even in the presence of diffuse peritonitis [14,15].

According to CIAOW Study data, the Hartmann resection was the most frequently performed procedure to address both complicated diverticulitis and non-diverticular colonic perforations worldwide.

The significance of microbiological analysis of infected peritoneal fluid in community-acquired intra-abdominal infections has been debated in recent years.

Although the absence of impact of bacteriological cultures has been documented especially in appendicitis [16], in this era of the broad spread of resistant microorganisms such as nosocomial and community extended-spectrum b-lactamase (ESBL) Enterobacteriaceae, carbapenemase producing gram negatives, b lactamand vancomycin resistant enterococci (VRE), the threat of resistance is a source of major concern for clinicians. Therefore the results of the microbiological analyses have great importance for the therapeutic strategy of every patients.

According to CIAOW Study data, intraperitoneal specimens were collected from 62.7% of patients with complicated intra-abdominal infections.

Intraperitoneal specimens were collected in 59.4% patients presenting with community-acquired intraabdominal infections.

Intraperitoneal specimens were collected from 84.2% of the patients with nosocomial intra-abdominal infections.

In many clinical laboratories, species identification and susceptibility testing of anaerobic isolates are not routinely performed. Tests for anaerobes were conducted for 486 patients.

The major pathogens involved in community-acquired intra-abdominal infections are Enterobacteriaceae, *Strepto-coccus* species, and certain anaerobes (particularly B. fragilis).

The main resistance threat in intra.-abdominal infections is posed by ESBL-producing Enterobacteriaceae, which are becoming increasingly common in communityacquired infections [17,18].

According to CIAOW Study data, ESBL producers were the most commonly identified drug-resistant microorganism involved in IAIs.

Recent years have seen an escalating trend of *Klebsi-ella pneumoniae* Carbapenemase (KPC) production, which continues to cause serious multidrug-resistant infections around the world. The recent emergence of Carbapenem-resistant Enterobacteriaceae is a major threat to hospitalized patients [19].

5 identified isolates of *Klebsiella pneumoniae* proved resistant to Carbapenems.

Pseudomonas aeruginosa is one of the major nosocomial pathogens worldwide. It is intrinsically resistant to many drugs and is able to become resistant to virtually any antimicrobial agent.

The rate of *Pseudomonas aeruginosa* was 5.6% of all microorganisms isolated in the intra-operative samples. According to CIAOW study there was no significant difference between community and healthcare associate infections.

The 2 *Pseudomonas aeruginosa* strains resistant to Carbapenems were also obtained from nosocomial infections.

Enterococci are significant pathogens in intraabdominal infections. Among multidrug Gram positive bacteria, Enterococci remain a challenge. The evolution of antimicrobial resistance in these organisms poses enormous challenges for clinicians when faced with patients affected with Enterococcus infections. Enterococcus infections are difficult to treat because of both intrinsic and acquired resistance to many antibiotics.

Enterococci (E. faecalis and E. faecium) were the most common Gram positive aerobic isolates.

Although Enterococci were also identified in communityacquired infections, they were far more prevalent in nosocomial infections.

In the last years there has been a significant increase in the incidence of invasive infections due to Candida species. Although the epidemiological role of Candida spp. in nosocomial peritonitis is not yet defined, the clinical role is significant, because Candida isolation is normally associated to a poor prognosis [20].

In the CIAOW Study 117 Candida isolates were collectively identified (6%). 90 were Candida albicans and 27 were non-albicans Candida.

It is well known that patients with severe sepsis or septic shock may be complicated by high mortality rates. According to the CIAOW Study the overall mortality rate was 10.5% (199/1898).

29.8% of patients were admitted to the ICU in the early recovery phase immediately following surgery. In the immediate post-operative clinical period 269 patients were critically ill (132 with septic shock, 137 with severe sepsis).

The surgical treatment strategies following an initial emergency laparotomy have been debated in the last years.

The decision whether and when to perform a relaparotomy in secondary peritonitis is largely subjective and based on professional experience. Factors indicative of progressive or persistent organ failure during early postoperative follow-up are the best indicators for ongoing infection and associated positive findings at relaparotomy [21-23].

Relaparotomy strategies may include either a relaparotomy, when the patient's condition demands it ("relaparotomy on-demand"), or a planned relaparotomy with temporarily abdomen closure or open abdomen [24-27].

In the CIAOW Study 223 post-operative patients (11.7%) ultimately required additional surgeries. 62 (11.3%) of these patients underwent open abdominal procedures.

According to univariate statistical analysis of the data, septic shock and severe sepsis upon hospital admission were both predictive of patient mortality.

The setting of acquisition was also a variable found to be predictive of patient mortality (healthcare-associated infections).

Among the various sources of infection, colonic nondiverticular perforation, complicated diverticulitis, small bowel perforation and post-operative infections were significantly correlated with patient mortality.

Mortality rates did not vary to a statistically significant degree between patients who received adequate source control and those who did not. However, a delayed initial intervention (a delay exceeding 24 hours) was associated with an increased mortality rate.

The nature of the immediate post-operative clinical period was a significant predictor of mortality. Patients requiring ICU admission were also associated with increased mortality rates.

Also comorbidities were associated to patient mortality.

According to stepwise multivariate analysis, several criteria were found to be independent variables predictive of

mortality, including patient age, the presence of small bowel perforation, a delayed initial intervention (a delay exceeding 24 hours), ICU admission and patient immunosuppression.

Conclusion

Complicated intra-abdominal infections remain an important source of patient morbidity and are frequently associated with poor clinical prognoses, particularly for patients in high-risk categories.

Given the sweeping geographical distribution of the participating medical centers, the CIAOW Study gives an accurate description of the epidemiological, clinical, microbiological, and treatment profiles of complicated intra-abdominal infections worldwide.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MS designed the study and wrote the manuscript. FCo and DC performed statistical analysis. All authors participated in the study.

Author details

¹Department of Surgery, Macerata Hospital, Macerata, Italy. ²Emergency Surgery, Maggiore Parma Hospital, Parma, Italy. ³Department of General Surgery, Ospedali Riuniti, Bergamo, Italy. ⁴Department of Anestesiology, Ospedali Riuniti, Bergamo, Italy. ⁵Department of Surgery, Denver Health Medical Center, Denver, USA. ⁶American Board of Surgery, Philadelphia, USA. ⁷Division of Trauma, Emergency Surgery and Surgical Critical Care, Harvard Medical School, Massachusetts General Hospital, Massachusetts, USA. ⁸Department of Surgery, UC San Diego Health System, San Diego, USA. ⁹Department of Primary Care & Emergency Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. ¹⁰Department of Abdominal Surgery, University Hospital Meilahti, Helsinki, Finland. ¹¹Department of Surgery, University of Newcastle, Newcastle, NSW, Australia. ¹²Department of Surgery, Govt Medical College and Hospital, Chandigarh, India. ¹³Department of General Surgery, Rambam Health Care Campus, Haifa, Israel. ¹⁴Department of Surgery, Adria Hospital Adria, Adria, Italy. ¹⁵Trauma Surgery Unit, Maggiore Hospital, Bologna, Italy. ¹⁶Department of Surgery, Maggiore Hospital, Bologna, Italy.¹⁷Department of Surgery, Fundación Valle del Lilí, Cali, Colombia.¹⁸Division of Trauma/Critical Care Department of Surgery Virginia Commonwealth University, Richmond, VA, USA. ¹⁹Division of Trauma Surgery, Campinas University, Campinas, Brazil. ²⁰Department of Surgery, Monte Sinai Hospital, Juiz de Fora, Brazil.²¹Department of Surgery, Emergency Unit, Ribeirão Preto, Brazil.²²Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.²³Department of General Surgery, Hadassah Medical Center, Jerusalem, Israel. ²⁴Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, Tianjin Medical University, Tianjin, China. ²⁵Department of Surgery, Pt BDS Post-graduate Institute of Medical Sciences, Rohtak, India.²⁶Department of Surgery, MOSC Medical College, Cochin, India. ²⁷Department of Surgery, SKIMS, Srinagar, India. ²⁸Department of Surgery, Kovai Medical Center, Coimbatore, India. ²⁹First Clinic of General Surgery, University Hospital/UMBAL/St George Plovdiv, Plovdiv, Bulgaria. ³⁰Department of Surgery, Edendale Surgery, Pietermaritzburg, Republic of South Africa. ³¹Department of Surgery, Ahmadu Bello University Teaching Hospital Zaria, Kaduna, Nigeria. ³²Department of Surgery, Mansoura University Hospital, Mansoura, Egypt. ³³Department of Surgery, Faculdades Integradas Padre Albino, Catanduva, Brazil. ³⁴Department of Surgery, Mazzoni Hospital, Ascoli Piceno, Italy. ³⁵Department of Surgery, Mellini Hospital, Chiari, BS, Italy. ³⁶Department of General and Digestive Surgery, Virgen de la Victoria, University Hospital, Malaga, Spain. ³⁷Department of General Surgery and Surgical Oncology, Université de Nice Sophia-Antipolis, Universitary Hospital of Nice, Nice, France. ³⁸Department of Surgery, Hospital and Oncological Centre, Novy Jicin, Czech Republic. ³⁹Department of General Surgery, Lviv Emergency Hospital, Lviv, Ukraine. ⁴⁰Department of Surgery, University Hospital Center Zagreb, Zagreb, Croatia.

⁴¹3rd Department of General Surger Jagiellonian Univeristy, Narutowicz Hospital, Krakow, Poland. ⁴²Department of Surgery, Mozyr City Hospital, Mozyr, Belarus. ⁴³Department of Surgery, Ancona University, Ancona, Italy. ⁴⁴Department of Surgery, Ripas Hospital, Bandar Seri Begawan, Brunei. ⁴⁵Clinical Sciences, Regional Hospitals Limbe and Buea, Limbe, Cameroon. ⁴⁶Department of Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea. ⁴⁷Division of Trauma and Surgical Critical Care, Department of Surgery, University of Ulsan, Seoul, Republic of Korea. ⁴⁸II Cátedra de Clínica Quirúrgica, Hospital de Clínicas, Asuncion, Paraguay. ⁴⁹Department of Surgery, Cutral Có Clinic, Cutral Có, Argentina. ⁵⁰Department of Surgery, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand. ⁵¹Department of Surgery, Thammasat University Hospital, Pathumthani, Thailand. ⁵²Department of Surgery, Bahrain Defence Force Hospital, Manama, Bahrain. ⁵³Department of Surgery, Hospital Regional de Alta Especialidad del Bajio, Leon, Mexico. ⁵⁴Clinical and Experimental Sciences, Brescia Ospedali Civili, Brescia, Italy. 55 General Surgery, Adana Numune Training and Research Hospital, Adana, Turkey. ⁵⁶Visceral Surgery, Military Hospital Desgenettes, Lyon, France. ⁵⁷Visceral Surgery, Teaching Hospital Yalgado Ouedraogo, Ouedraogo, Burkina Faso. 58 Department of Acute and Critical care medicine, Tokyo Medical and Dental University, Tokyo, Japan. ⁵⁹The Shock Trauma and Emergency Medical Center, Matsudo City Hospital, Chiba, Japan. ⁶⁰Emergency and Critical Care Center of Nippon Medical School, Tama-Nagayama Hospital, Tokyo, Japan.⁶¹Department of Surgery, Our Lady of Lourdes Hospital, Drogheda, Ireland. ⁶²Department of Surgery, Port Shepstone Hospital, Port Shepstone, South Africa. ⁶³Department of Surgery, Obafemi Awolowo UNiversity Hospital, Ile-Ife, Nigeria. ⁶⁴Department of Emergency and Critical Care Medicine, Chiba University Hospital, Chiba, Japan.⁶⁵Depatment of Emergency Medicine, Kyoto Second Red Cross Hospital, Kyoto, Japan. ⁶⁶Tajima emergency & Critical Care Medical Center, Toyooka Public Hospital, Toyooka, Hyogo, Japan. ⁶⁷Emergency and Critical Care Medicine, Jichi Medical University, Shimotsuke, Japan. ⁶⁸Department of Surgery, Mayo General Hospital Castlebar Co. Mayo, Castlebar, Ireland,

Received: 2 April 2014 Accepted: 11 May 2014 Published: 14 May 2014

References

- 1. Menichetti F, Sganga G: Definition and classification of intra-abdominal infections. J Chemother 2009, 21(Suppl 1):3–4.
- Marshall JC, Maier RV, Jimenez M, Dellinger EP: Source control in the management of severe sepsis and septic shock: an evidence-based review. Crit Care Med 2004, 32(11 Suppl):S513–S526.
- 3. Pieracci FM, Barie PS: Management of severe sepsis of abdominal origin. Scand J Surg 2007, 96(3):184–196.
- 4. Sartelli M, Catena F, Ansaloni L, Leppaniemi A, Taviloglu K, Goor H, Viale P, Lazzareschi DV, Coccolini F, Corbella D, Werra C, Marrelli D, Colizza S, Scibè R, Alis H, Torer N, Navarro S, Sakakushev B, Massalou D, Augustin G, Catani M, Kauhanen S, Pletinckx P, Kenig J, Saverio S, Jovine E, Guercioni G, Skrovina M, Diaz-Nieto R, Ferrero A, *et al*: Complicated intra-abdominal infections in Europe: a comprehensive review of the CIAO study. *World J Emerg Surg* 2012, 7(1):36.
- Sartelli M, Catena F, Ansaloni L, Moore E, Malangoni M, Velmahos G, Coimbra R, Koike K, Leppaniemi A, Biffl W, Balogh Z, Bendinelli C, Gupta S, Kluger Y, Agresta F, Di Saverio S, Tugnoli G, Jovine E, Ordonez C, Gomes CA, Junior GA, Yuan KC, Bala M, Peev MP, Cui Y, Marwah S, Zachariah S, Sakakushev B, Kong V, Ahmed A, *et al*: Complicated intra-abdominal infections in a worldwide context: an observational prospective study (CIAOW Study). World J Emerg Surg 2013, 8(1):1.
- Oliak D, Yamini D, Udani VM, Lewis RJ, Arnell T, Vargas H, Stamos MJ: Initial nonoperative management for periappendiceal abscess. *Dis Colon Rectum* 2001, 44:936–941.
- Brown CV, Abrishami M, Muller M, Velmahos GC: Appendiceal abscess: immediate operation or percutaneous drainage? *Am Surg* 2003, 69:829–832.
- Andersson RE, Petzold MG: Nonsurgical treatment of appendiceal abscess or phlegmon: a systematic review and meta-analysis. *Ann Surg* 2007, 246:741–748.
- Lau H, Lo CY, Patil NG, Yuen WK: Early versus delayed-interval laparoscopic cholecystectomy for acute cholecystitis. A Meta Anal Surg Endosc 2006, 20(1):82–87.

- Papi C, Catarci M, D'Ambrosio L, Gili L, Koch M, Grassi GB, Capurso L: Timing of cholecystectomy for acute cholecystitis: a meta-analysis. *Am J Gastroenterol* 2004, 99(1):147–155.
- Gurusamy KS, Samraj K: Early versus delayed laparoscopic cholecystectomy for acute cholecystitis. Cochrane Database Syst Rev 2006, 18(4):CD005440.
- 12. Shikata S, Noguchi Y, Fukui T: Early versus delayed cholecystectomy for acute cholecystitis: a meta-analysis of randomized controlled trials. *Surg Today* 2005, **35**(7):553–560.
- McCafferty MH, Roth L, Jorden J: Current management of diverticulitis. Am Surg 2008, 74(11):1041–1049.
- 14. Salem L, Flum DR: Primary anastomosis or Hartmann's procedure for patients with diverticular peritonitis? A systematic review. *Dis Colon Rectum* 2004, **47**(11):1953–1964.
- Chandra V, Nelson H, Larson DR, Harrington JR: Impact of primary resection on the outcome of patients with perforated diverticulitis. *Arch* Surg 2004, 139(11):1221–1224.
- Gladman MA, Knowles CH, Gladman LJ, Payne JG: Intra-operative culture in appendicitis: Traditional practice challenged. Ann R Coll Surg Engl 2004, 86(3):196–201.
- Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Cantón R, Baquero F: Incidence and antimicrobial susceptibility of Escherichia coli and Klebsiella pneumoniae with extended-spectrum beta-lactamases in community- and hospital-associated intra-abdominal infections in Europe: results of the 2008 Study for Monitoring Antimicrobial Resistance Trends (SMART). Antimicrob Agents Chemother 2010, 54(7):3043–3046.
- Ben-Ami R, Rodriguez-Bano J, Arsian H, Pitout JD, Quentin C, Calbo ES, Azap OK, Arpin C, Pascual A, Livermore DM, Garau J, Carmeli Y: A multinational survey of risk factors for infection with extended-spectrum β-lactamaseproducing Enterobacteriaceae in nonhospitalized patients. *Clin Infect Dis* 2009, 49:682–690.
- Lee GC, Burgess DS: Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: a review of published case series and case reports. *Ann Clin Microbiol Antimicrob* 2012, 11(13):32.
- Montravers P, Dupont H, Gauzit R, Veber B, Auboyer C, Blin P, Hennequin C, Martin C: Candida as a risk factor for mortality in peritonitis. *Crit Care Med* 2006, 34(3):646–652.
- van Ruler O, Lamme B, Gouma DJ, Reitsma JB, Boermeester MA: Variables associated with positive findings at relaparotomy in patients with secondary peritonitis. *Crit Care Med* 2007, 35(2):468–476.
- Hutchins RR, Gunning MP, Lucas DN, Allen-Mersh TG, Soni NC: Relaparotomy for suspected intraperitoneal sepsis after abdominal surgery. World J Surg 2004, 28(2):137–141.
- Lamme B, Mahler CW, van Ruler O, Gouma DJ, Reitsma JB, Boermeester MA: Clinical predictors of ongoing infection in secondary peritonitis: systematic review. World J Surg 2006, 30(12):2170–2181.
- van Ruler O, Mahler CW, Boer KR, Reuland EA, Gooszen HG, Opmeer BC, de Graaf PW, Lamme B, Gerhards MF, Steller EP, van Till JW, de Borgie CJ, Gouma DJ, Reitsma JB, Boermeester MA: Dutch Peritonitis Study Group. Comparison of on-demand vs planned relaparotomy strategy in patients with severe peritonitis: a randomized trial. JAMA 2007, 298(8):865–872.
- Amin Al, Shaikh IA: Topical negative pressure in managing severe peritonitis: a positive contribution? World J Gastroenterol 2009, 15(27):3394–3397.
- 26. Adkins AL, Robbins J, Villalba M, Bendick P, Shanley CJ: **Open abdomen** management of intra-abdominal sepsis. *Am Surg* 2004, **70**:137–140.
- Schein M: Planned reoperations and open management in critical intraabdominal infections: prospective experience in 52 cases. World J Surg 1991, 15:537–545.

doi:10.1186/1749-7922-9-37

Cite this article as: Sartelli *et al.*: Complicated intra-abdominal infections worldwide: the definitive data of the CIAOW Study. *World Journal of Emergency Surgery* 2014 **9**:37.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit